Abstract
Rapid and accurate ambiguity resolution is the core of high-precision precise point positioning (PPP) data processing. However, the ambiguity parameters in PPP observation models are easily affected by atmospheric residual and gross errors, which lead to the probability of successfully fixing decreases and computational burden increases in full ambiguity resolution. Therefore, an increasing number of partial ambiguity resolution (PAR) strategies have been proposed. The selection of the optimal subset of PAR is crucial in this method. The traditional optimal subset selection method of PAR commonly leads to a single judgment criterion and weakened geometric configuration strength because the satellites with low elevation angles are often easily eliminated during the optimal subset selection. In this paper, a multi-factor constrained optimal subset selection method for PAR was proposed, which incorporates the ambiguity variance, the ambiguity dilution of precision (ADOP), satellite position dilution of precision (PDOP) and ratio test values. In order to verify the feasibility of the proposed optimal subset selection method, PAR tests under two schemes were performed for GPS/Galileo based on the static observation data of 15 Multi-GNSS Experiment (MGEX) tracking stations. The results show that, compared with the ambiguity variance sorting method, the proposed subset selection method can further improve the accuracy of the coordinate solution and the strength of geometric figure positioning. The average root mean square of the coordinate residuals is found to decrease by about 12.90%, 6.83% and 9.39% in the eastern, northern and vertical directions, respectively. The increase in the fixed epoch rate ranged from 0.87% to 33.33%, with an average of about 8.71%.
Funder
Beijing Key Laboratory of Urban Spatial Information Engineering
National Nature Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献