Vegetation Growth Status and Topographic Effects in Frozen Soil Regions on the Qinghai–Tibet Plateau

Author:

Wang Ruijie,Wang Yanjiao,Yan FengORCID

Abstract

The Qinghai–Tibet Plateau (QTP), which is known as Earth’s “Third Pole”, is a driver of global climate change, and long-term monitoring of QTP vegetation can reveal changes attributable to climatic and human influences. Previous research monitoring vegetation on the QTP focused primarily on spatiotemporal variations of vegetation indices, while few studies have considered fractional vegetation cover (FVC) in relation to topographic and frozen soil factors. We used MODIS-EVI, digital elevation models, and frozen soil data to investigate topographic effects on vegetation growth status in different soil types on the QTP during 2000–2020. (1) FVC showed a trend of increase during 2000–2020, and the FVC on the QTP decreased from the southeast to the northwest in spatial distribution. FVC in permafrost regions was the lowest, followed by seasonal frozen soil areas; FVC in unfrozen areas was the highest. (2) With increasing elevation, FVC of permafrost, seasonal frozen, and unfrozen soil areas showed downward trends for each aspect. In seasonal frozen soil areas, at elevation ≤4000 m (>4000 m), FVC of sunny (shady) slopes was greater than that of shady (sunny) slopes. In permafrost regions, except at elevations of 3000–4000 m, FVC of shady slopes was greater than that of sunny slopes. In unfrozen soil areas, at elevation >4000 m, FVC of sunny slopes was obviously greater than that of shady slopes. (3) With increasing slope, FVC in seasonal frozen and permafrost soil (unfrozen soil) regions showed a trend of increase (decrease). In seasonal frozen soil areas, FVC of sunny (shady) slopes was greater than that of shady (sunny) slopes on slopes ≤6° (>6°). In permafrost regions, FVC of sunny slopes was less than that of shady slopes. With increasing slope, the influence of aspect became more obvious. In unfrozen soil areas, FVC of sunny slopes was slightly greater than that of shady slopes. Topographic effects especially the elevation and slope effects might significantly affect the spatiotemporal variations of vegetation growth status in frozen soil regions on the QTP.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3