Probabilistic Tracking of Annual Cropland Changes over Large, Complex Agricultural Landscapes Using Google Earth Engine

Author:

Xiong Sitian,Baltezar Priscilla,Crowley Morgan A.ORCID,Cecil Michael,Crema Stefano C.,Baldwin Eli,Cardille Jeffrey A.ORCID,Estes LyndonORCID

Abstract

Cropland expansion is expected to increase across sub-Saharan African (SSA) countries in the next thirty years to meet growing food needs across the continent. These land transformations will have cascading social and ecological impacts that can be monitored using novel Earth observation techniques that produce datasets complementary to national cropland surveys. In this study, we present a flexible Bayesian data synthesis workflow on Google Earth Engine (GEE) that can be used to fuse optical and synthetic aperture radar data and demonstrate its ability to track agricultural change at national scales. We adapted the previously developed Bayesian Updating of Land Cover (Unsupervised) algorithm (BULC-U) by integrating a shapelet and slope thresholding algorithm to identify the locations and dates of cropland expansion and implemented a tiling scheme to allow the processing of large volumes of imagery. We apply this approach to map annual cropland change from 2000 to 2015 for Zambia (750,000 km2), a country that is experiencing rapid growth in agricultural land. We applied our cropland mapping approach to a time series of unsupervised classifications developed from Landsat 5, 7, 8, Sentinel-1, and ALOS PALSAR within 1476 tiles covering Zambia. The annual cropland changes maps reveal active cropland expansion between 2000 to 2015 in Zambia, especially in the Southern, Central, and Eastern provinces. Our accuracy assessment estimates that we have identified 27.5% to 69.6% of the total cropland expansion from 2000 to 2015 in Zambia (commission errors between 6.1% to 37.6%), depending on the slope threshold. Our results demonstrate the usefulness of Bayesian data fusion and shapelet, slope-based thresholding to synthesize optical and synthetic aperture radar for monitoring agricultural changes in situations where training data are scarce. In addition, the annual cropland maps provide one of the first spatially continuous, annually incremented accounts of cropland growth in this region. Our flexible, cloud-based workflow using GEE enables multi-sensor, national-scale agricultural change monitoring at low cost for users.

Funder

National Aeronautics and Space Administration

National Science Foundation

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3