Real-Time FPGA Accelerated Stereo Matching for Temporal Statistical Pattern Projector Systems

Author:

Brus Zan,Kos Marko,Erker Matic,Kramberger IztokORCID

Abstract

The presented paper describes a hardware-accelerated field programmable gate array (FPGA)–based solution capable of real-time stereo matching for temporal statistical pattern projector systems. Modern 3D measurement systems have seen an increased use of temporal statistical pattern projectors as their active illumination source. The use of temporal statistical patterns in stereo vision systems includes the advantage of not requiring information about pattern characteristics, enabling a simplified projector design. Stereo-matching algorithms used in such systems rely on the locally unique temporal changes in brightness to establish a pixel correspondence between the stereo image pair. Finding the temporal correspondence between individual pixels in temporal image pairs is computationally expensive, requiring GPU-based solutions to achieve real-time calculation. By leveraging a high-level synthesis approach, matching cost simplification, and FPGA-specific design optimizations, an energy-efficient, high throughput stereo-matching solution was developed. The design is capable of calculating disparity images on a 1024 × 1024(@291 FPS) input image pair stream at 8.1 W on an embedded FPGA platform (ZC706). Several different design configurations were tested, evaluating device utilization, throughput, power consumption, and performance-per-watt. The average performance-per-watt of the FPGA solution was two times higher than in a GPU-based solution.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FPGA-Based High-Speed and Resource-Efficient 3D Reconstruction for Structured Light System;2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS);2023-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3