Abstract
This paper surveys the deep learning (DL) approaches for intrusion-detection systems (IDSs) in Internet of Things (IoT) and the associated datasets toward identifying gaps, weaknesses, and a neutral reference architecture. A comparative study of IDSs is provided, with a review of anomaly-based IDSs on DL approaches, which include supervised, unsupervised, and hybrid methods. All techniques in these three categories have essentially been used in IoT environments. To date, only a few have been used in the anomaly-based IDS for IoT. For each of these anomaly-based IDSs, the implementation of the four categories of feature(s) extraction, classification, prediction, and regression were evaluated. We studied important performance metrics and benchmark detection rates, including the requisite efficiency of the various methods. Four machine learning algorithms were evaluated for classification purposes: Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), and an Artificial Neural Network (ANN). Therefore, we compared each via the Receiver Operating Characteristic (ROC) curve. The study model exhibits promising outcomes for all classes of attacks. The scope of our analysis examines attacks targeting the IoT ecosystem using empirically based, simulation-generated datasets (namely the Bot-IoT and the IoTID20 datasets).
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference120 articles.
1. Number of Connected Devices Worldwide 2030;Holst,2018
2. Towards Internet of Things: Survey and Future Vision;Said;Int. J. Comput. Netw.,2013
3. Internet of Things: Architectures, Protocols, and Applications
4. The Internet of Things vision: Key features, applications and open issues
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献