Efficient Self-Supervised Metric Information Retrieval: A Bibliography Based Method Applied to COVID Literature

Author:

Moro GianlucaORCID,Valgimigli LorenzoORCID

Abstract

The literature on coronaviruses counts more than 300,000 publications. Finding relevant papers concerning arbitrary queries is essential to discovery helpful knowledge. Current best information retrieval (IR) use deep learning approaches and need supervised training sets with labeled data, namely to know a priori the queries and their corresponding relevant papers. Creating such labeled datasets is time-expensive and requires prominent experts’ efforts, resources insufficiently available under a pandemic time pressure. We present a new self-supervised solution, called SUBLIMER, that does not require labels to learn to search on corpora of scientific papers for most relevant against arbitrary queries. SUBLIMER is a novel efficient IR engine trained on the unsupervised COVID-19 Open Research Dataset (CORD19), using deep metric learning. The core point of our self-supervised approach is that it uses no labels, but exploits the bibliography citations from papers to create a latent space where their spatial proximity is a metric of semantic similarity; for this reason, it can also be applied to other domains of papers corpora. SUBLIMER, despite is self-supervised, outperforms the Precision@5 (P@5) and Bpref of the state-of-the-art competitors on CORD19, which, differently from our approach, require both labeled datasets and a number of trainable parameters that is an order of magnitude higher than our.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference72 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3