A Workflow for Computer-Aided Evaluation of Keloid Based on Laser Speckle Contrast Imaging and Deep Learning

Author:

Li Shuo,Wang He,Xiao Yiding,Zhang Mingzi,Yu Nanze,Zeng Ang,Wang Xiaojun

Abstract

A keloid results from abnormal wound healing, which has different blood perfusion and growth states among patients. Active monitoring and treatment of actively growing keloids at the initial stage can effectively inhibit keloid enlargement and has important medical and aesthetic implications. LSCI (laser speckle contrast imaging) has been developed to obtain the blood perfusion of the keloid and shows a high relationship with the severity and prognosis. However, the LSCI-based method requires manual annotation and evaluation of the keloid, which is time consuming. Although many studies have designed deep-learning networks for the detection and classification of skin lesions, there are still challenges to the assessment of keloid growth status, especially based on small samples. This retrospective study included 150 untreated keloid patients, intensity images, and blood perfusion images obtained from LSCI. A newly proposed workflow based on cascaded vision transformer architecture was proposed, reaching a dice coefficient value of 0.895 for keloid segmentation by 2% improvement, an error of 8.6 ± 5.4 perfusion units, and a relative error of 7.8% ± 6.6% for blood calculation, and an accuracy of 0.927 for growth state prediction by 1.4% improvement than baseline.

Publisher

MDPI AG

Subject

Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in Dynamic Light Scattering Imaging of Blood Flow;Laser & Photonics Reviews;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3