Methodology and Tools to Integrate Industry 4.0 CPS into Process Design and Management: ISA-88 Use Case

Author:

Garcia Ander,Oregui Xabier,Arrieta Unai,Valverde Iñigo

Abstract

Once an industrial process is designed, the real implementation of the process control is programmed into Supervisory Control and Data Acquisition (SCADA) and Programmable Logic Controller (PLC) devices on the shop floor. These devices are programmed with their low-level coding languages. This presents several drawbacks, such as inconsistencies and naming errors between the design and the implementation steps, or difficulties in integrating new Industry 4.0 functionalities. This paper presents a design and management methodology, and a software architecture to overcome these drawbacks. The objective of the methodology is the interconnectivity of domain knowledge, software, and hardware components to automatically generate Industry 4.0 Cyber-Physical Systems (CPS) for industrial processes. The methodology is composed of five main steps: designing the process, programming the PLC, capturing data, managing the process and visualizing it. Based on the methodology and the architecture, a set of tools targeting ISA-88 processes has been implemented and validated. IEC-61512 (also known as ANSI/ISA-88) is a standard addressing batch process control. It follows a design philosophy for describing equipment and procedures, equally applicable to manual processes. The methodology has been validated on a process controlled by a Siemens 1200 PLC. The main advantages of this methodology identified during the validation are: (i) reduction in the time required to design the ISA-88 process, (ii) reduction in the PLC programming time and associated errors, (iii) automatic integration of a CPS with data capture and visualization functionalities, and (iv) remote management of the process.

Funder

Basque Government

Publisher

MDPI AG

Subject

Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Research of a Field Bus Control System Laboratory for Metal Mining, Beneficiation and Metallurgy;Processes;2023-09-06

2. How To Accelerate Digital Transformation in Companies With Lean Philosophy? Contributions Based on a Practical Case;International Journal of Industrial Engineering and Management;2023-06-30

3. Design of PLC Control System by Micro-Automation Equipment;2023 15th International Conference on Computer and Automation Engineering (ICCAE);2023-03-03

4. A cyber-physical approach for development of Vacuum Control System on the EBMR plant;Journal of Physics: Conference Series;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3