Abstract
Standard-cell placement is the fundamental step in a typical VLSI/ASIC design flow. Its result, paired with the outcome of the routing procedure can be the decisive factor in rendering a design manufacturable. Global placement generates an optimized instance of the design targeting a set of metrics, while ignoring rules pertaining its feasibility. Legalization and detailed placement rectify this situation, attempting to attain minimum quality loss by often disregarding the connectivity between cells and making runtime the focal point of these steps. In this article, we present a set of variations on a connectivity-based legalization scheme that can either be applied as a legalizer or a detailed placer. The variations can be applied in the entirety of the chip area or in the confinement of a user-specified bin while they are guided by various optimization goals, e.g., total wire length, displacement and density. We analytically describe our variations and evaluate them through extensive simulations on commonly used benchmarks.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Assessing Swapping Policies as a Detailed Placement Approach;2023 8th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM);2023-11-10