The Potential of Using Immobilized Xylanases to Enhance the Hydrolysis of Soluble, Biomass Derived Xylooligomers

Author:

Hu Jinguang,Davies Joshua,Mok Yiu,Arato Claudio,Saddler John

Abstract

Earlier work had indicated that enzyme-mediated hydrolysis of xylooligomer-rich water-soluble streams (derived from steam pre-treated wheat straw) resulted in the effective production of xylose which was subsequently used to produce bio-glycol. In the work reported here, both the thermostability and recyclability of xylanases were significantly improved by covalent immobilizing the enzymes onto alginate beads. The immobilized xylanases showed a lower hydrolytic potential (~55% xylooligomer conversion) compared to the commercial xylanase cocktail HTec3 (~90% xylooligomer conversion) when used at the same protein loading concentration. This was likely due to the less efficient immobilization of key higher molecular weight enzymes (>75 kDa), such as β-xylosidases. However, enzyme immobilization could be improved by lowering the glutaraldehyde loading used to activate the alginate beads, resulting in improved hydrolysis efficacy (~65% xylooligomer conversion). Enzyme immobilization improved enzyme thermostability (endoxylanase and β-xylosidase activities were improved by 80% and 40%, respectively, after 24 h hydrolysis) and this allowed the immobilized enzymes to be reused/recycled for multiple rounds of hydrolysis (up to five times) without any significant reduction in their hydrolytic potential.

Funder

Mitacs

Publisher

MDPI AG

Subject

General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3