Effects of Pyrazine Derivatives and Substituted Positions on the Photoelectric Properties and Electromemory Performance of D–A–D Series Compounds

Author:

Song Xuejing,Kong Lingqian,Du Hongmei,Li Xiangyu,Feng Hanlin,Zhao Jinsheng,Xie Yu

Abstract

Pyrazine derivatives quinoxaline and pyridopyrazine were selected as the acceptors, and benzocarbazole was used as the donor to synthesize four different D–A–D compounds. The results showed that 2,3-bis(decyloxy)pyridine[3,4-b]pyrazine (DPP) exhibited stronger electron-withdrawing ability than that of 2,3-bis(decyloxy)quinoxaline (DPx), because DPP possesses one more nitrogen (N) atom, resulting in a red-shift of the intramolecular charge transfer (ICT) absorption bands and fluorescent emission spectra for compounds with DPP as the acceptor compared with those that use DPx as the acceptor. The band-gap energy (Eg) of the four D–A–D compounds were 2.82 eV, 2.70 eV, 2.48 eV, and 2.62 eV, respectively, for BPC-2DPx, BPC-3DPx, BPC-2DPP, and BPC-3DPP. The solvatochromic effect was insignificant when the four compounds were in the ground state, which became significant in an excited state. With increasing solvent polarity, a 30–43 nm red shift was observed in the emissive spectra of the compounds. The thermal decomposition temperatures of the four compounds between 436 and 453 °C had very high thermal stability. Resistor-type memory devices based on BPC-2DPx and BPC-2DPP were fabricated in a simple sandwich configuration, Al/BPC-2DPx/ITO or Al/BPC-2DPP/ITO. The two devices showed a binary non-volatile flash memory, with lower threshold voltages and better repeatability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3