A Novel, Multifunctional, Floatable, Lightweight Cement Composite: Development and Properties

Author:

Huang Zhenyu,Wang Fang,Zhou Yingwu,Sui Lili,Krishnan Padmaja,Liew Jat-Yuen. Richard

Abstract

This paper presents the development of a novel, multifunctional, floatable, lightweight cement composite (FLCC) using three different types of glass microspheres for structural engineering applications. Eight different mixtures of FLCC were produced and their matrix-related parameters were examined experimentally by adopting different types of microsphere fillers, fiber content (polyethylene fibers (PE)), and water-to-binder ratios. Along with the mechanical properties such as compressive, flexural, tensile strengths, and modulus of elasticity, the water tightness of the material was evaluated by sorptivity measurements and the energy efficiency by thermal conductivity. The optimal FLCC has an oven-dry density of 750 kg/m3, compressive strength (fcm) up to 41 MPa after 28-day moist curing, low thermal conductivity of 0.152 W/mK, and very low sorptivity. It is found that an optimized amount of PE fiber is beneficial for improving the tensile resistance and ductility of FLCC while a relatively large amount of microspheres can increase the entrapped air voids in the FLCC matrix and reduce its density and thermal conductivity. Microstructural analysis by scanning electron microscopy (SEM) reveals that the microspheres are distributed uniformly in the cement matrix and are subjected to triaxial compression confinement, which leads to high strength of FLCC. Segregation due to density difference of FLCC ingredients is not observed with up to 60% (by weight) of glass microspheres added. Compared to the other lightweight aggregate concretes, the proposed FLCC could be used to build floating concrete structures, insulating elements, or even load-bearing structural elements such as floor and wall panels in which self-weight is a main concern.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3