Study on the Tribological Performance of Copper-Based Powder Metallurgical Friction Materials with Cu-Coated or Uncoated Graphite Particles as Lubricants

Author:

Zhang Xin,Zhang Yongzhen,Du Sanming,Yang Zhenghai,He Tiantian,Li Zhen

Abstract

The tribological performance of copper-based powder metallurgical material is much influenced by the interfacial bonding between the components and matrix. By adding Cu-coated or uncoated graphite particles as a lubricant, two types of copper-based powder metallurgical materials were prepared via spark plasma sintering (SPS). The hardness, relative density, and thermal conductivity of the two specimens were firstly measured. Using an inertial braking test bench and temperature measuring instrument, the average friction coefficients, instantaneous friction coefficients, and friction temperatures of the two specimens were tested under different test conditions, and the wear rates were calculated accordingly. Based on the analysis of surface morphologies and elements distribution after the tests, the mechanisms of wear and formation of friction films were discussed. The results show that with the lubricant of Cu-coated graphite, the hardness, relative density, thermal conductivity, and interfacial bonding between the graphite and matrix can be greatly improved. Under the same test condition, the average friction coefficient, wear rate, and friction temperature of the specimen with added Cu-coated graphite are both lower than those of the specimen with added uncoated graphite. The two specimens show different variation trends in the instantaneous friction coefficient during the tests, and the variation of the instantaneous friction coefficient at a high initial test speed is also different from that at a low initial test speed for each specimen. The two specimens also show differences in the continuity of friction film and the content of graphite and oxide in the friction film.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3