Ultra-Wideband and Wide-Angle Microwave Metamaterial Absorber

Author:

Begaud XavierORCID,Lepage Anne,Varault Stefan,Soiron Michel,Barka André

Abstract

In order to extend the performance of radar absorbing materials, it is necessary to design new structures with wideband properties and large angles of incidence which are also as thin as possible. The objective of this work, realized within the framework of the SAFAS project (self-complementary surface with low signature) is, then, the development of an ultra-wideband microwave absorber of low thickness. The design of such material requires a multilayered structure composed with dielectric layers, metasurfaces, and wide-angle impedance matching layers. This solution has been realized with on-the-shelf materials, and measured to validate the concept. At normal incidence, the bandwidth ratio, defined for a magnitude of the reflection coefficient below −10 dB, is 4.7:1 for an absorber with a total thickness of 11.5 mm, which corresponds to λ/7 at the lowest operating frequency. For an incidence of 60°, this bandwidth ratio is reduced to 3.8:1, but the device remains ultra-wideband.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3