Satellite Network Security Routing Technology Based on Deep Learning and Trust Management

Author:

Liu Zhiguo1,Rong Junlin1ORCID,Jiang Yingru1,Zhang Luxi1

Affiliation:

1. Communication and Network Laboratory, Dalian University, Dalian 116622, China

Abstract

The conventional trust model employed in satellite network security routing algorithms exhibits limited accuracy in detecting malicious nodes and lacks adaptability when confronted with unknown attacks. To address this challenge, this paper introduces a secure satellite network routing technology founded on deep learning and trust management. The approach embraces the concept of distributed trust management, resulting in all satellite nodes in this paper being equipped with trust management and anomaly detection modules for assessing the security of neighboring nodes. In a more detailed breakdown, this technology commences by preprocessing the communication behavior of satellite network nodes using D–S evidence theory, effectively mitigating interference factors encountered during the training of VAE modules. Following this preprocessing step, the trust vector, which has undergone prior processing, is input into the VAE module. Once the VAE module’s training is completed, the satellite network can assess safety factors by employing the safety module during the collection of trust evidence. Ultimately, these security factors can be integrated with the pheromone component within the ant colony algorithm to guide the ants in discovering pathways. Simulation results substantiate that the proposed satellite network secure routing algorithm effectively counters the impact of malicious nodes on data transmission within the network. When compared to the traditional trust management model of satellite network secure routing algorithms, the algorithm demonstrates enhancements in average end-to-end delay, packet loss rate, and throughput.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. Cao, X., Li, Y., Xiong, X., and Wang, J. (2022). Dynamic routings in satellite networks: An overview. Sensors, 22.

2. Van Nguyen, T. (2012). Design of Capacity-Approaching Protograph-Based LDPC Coding Systems, The University of Texas at Dallas.

3. Reconfigurable Intelligent Surface-aided M-ary FM-DCSK System: A New Design for Noncoherent Chaos-based Communication;Ma;IEEE Trans. Veh. Technol.,2022

4. Survey of turbo, LDPC, and polar decoder ASIC implementations;Shao;IEEE Commun. Surv. Tutor.,2019

5. Rate-diverse multiple access over Gaussian channels;Chen;IEEE Trans. Wirel. Commun.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reliable Data Delivery over LEO Satellite Networks;2023 IEEE International Workshop on Technologies for Defense and Security (TechDefense);2023-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3