Assessment of Lake Water Quality and Eutrophication Risk in an Agricultural Irrigation Area: A Case Study of the Chagan Lake in Northeast China

Author:

Liu Xuemei,Zhang Guangxin,Sun Guangzhi,Wu Yao,Chen Yueqing

Abstract

Water quality safety is the key factor to maintain the ecosystem service functions of lakes. Field investigations and statistical analyses were carried out to study the water quality of a large, agriculture-stressed lakes (e.g., Chagan Lake) in Northeast China. The hydro-chemical properties of the Chagan Lake are HCO3·CO3-Na. Nutrient (N and P) and non-nutrient (pH and F−) were found to be the major factors that threaten water quality safety of the lake. The concentration of total nitrogen (TN) and total phosphorus (TP) was found to vary seasonally and at different locations. The overall lake water had mean TN and TP values of 2.19 mg/L and 0.49 mg/L, respectively, in summer. TN was the major factor for water quality deterioration in the western region of the lake, while TP was the principal factor in the other regions, as determined by a principal component analysis (PCA). Fluoride (F−) concentration in the lake water were related to the values of total dissolved solid (TDS), pH, and electrical conductivity (EC). In addition, eutrophication is a fundamental index that has been affecting the ecological evaluation of water quality. The results showed that trophic level index (TLI), trophic state index (TSI), and eutrophication index (EI) were evaluated to quantify the risk of eutrophication. However, TLI and TSI can better describe the purification effect of the wetland. These indices showed that the lake water was hyper-eutrophic in summer, with TLI, TSI, and EI values of 60.1, 63.0, and 66.6, respectively. Disparities in water quality were observed among whole areas of the lake. Overall, this study revealed that controlling agriculture drainage is crucial for lake water quality management. The study generated critical data for making water quality management plans to control the risk.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3