Numerical Simulations of Hydraulic Characteristics of A Flow Discharge Measurement Process with A Plate Flowmeter in A U-Channel

Author:

Li Yongye,Gao Yuan,Jia Xiaomeng,Sun Xihuan,Zhang Xuelan

Abstract

The use of a flow discharge measuring device in irrigated areas is the key to utilizing water in a planned and scientific manner and to developing water-saving irrigation techniques. In this study, a new type of flow discharge measuring device for a U-channel—a plate flowmeter—was designed, and then the hydraulic characteristics of the flow discharge measurement process using the plate flowmeter were simulated and experimentally verified by adopting an RNG (Renormalization Group) k-ε turbulence model based on Flow-3D software. The results showed that in the process of measuring flow discharge with the plate flowmeter, the transverse flow velocity, the vertical flow velocity, and the relationship between the measured flow discharge and the deflection angle of the angle-measuring plate were basically consistent with the experimental results. The maximum relative errors were 5.3%, 6.2%, and 6.8% respectively, proving that it was feasible to use Flow-3D software to simulate the hydraulic characteristics of the flow discharge measurement process using the plate flowmeter. The vertical flow velocities at the center of the upstream section of the channel increased gradually from the bottom of the channel to the free water surface. The vertical flow velocities at the center of the downstream section of the channel first increased and then decreased from the bottom of the channel to the free water surface, and the maximum vertical flow velocity was located at a position below the free water surface. The maximum range of influence of the plate flowmeter on the flow disturbance in the channel was from 0.75 m upstream to 1.24 m downstream of the plate flowmeter. These results can provide a theoretical basis for optimizing the structural parameters of a plate flowmeter.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference32 articles.

1. Water-saving irrigation subsidy could increase regional water consumption

2. Irrigation efficiency and water-saving potential considering reuse of return flow

3. Simple flume with a central baffle

4. Cylinder flow measuring flume for U-shape channel;He;J. Hydraul. Eng.,2006

5. Effect of bottom slope of U-shaped channel measurement with round head pier;Liu;J. Hydroelectr. Eng.,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3