DRL-RNP: Deep Reinforcement Learning-Based Optimized RNP Flight Procedure Execution

Author:

Zhu LongtaoORCID,Wang Jinlin,Wang Yi,Ji Yulong,Ren JinchangORCID

Abstract

The required navigation performance (RNP) procedure is one of the two basic navigation specifications for the performance-based navigation (PBN) procedure as proposed by the International Civil Aviation Organization (ICAO) through an integration of the global navigation infrastructures to improve the utilization efficiency of airspace and reduce flight delays and the dependence on ground navigation facilities. The approach stage is one of the most important and difficult stages in the whole flying. In this study, we proposed deep reinforcement learning (DRL)-based RNP procedure execution, DRL-RNP. By conducting an RNP approach procedure, the DRL algorithm was implemented, using a fixed-wing aircraft to explore a path of minimum fuel consumption with reward under windy conditions in compliance with the RNP safety specifications. The experimental results have demonstrated that the six degrees of freedom aircraft controlled by the DRL algorithm can successfully complete the RNP procedure whilst meeting the safety specifications for protection areas and obstruction clearance altitude in the whole procedure. In addition, the potential path with minimum fuel consumption can be explored effectively. Hence, the DRL method can be used not only to implement the RNP procedure with a simulated aircraft but also to help the verification and evaluation of the RNP procedure.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference40 articles.

1. Present and Future of Air Navigation: PBN Operations and Supporting Technologies

2. Automating the Design of Instrument Flight Procedures;Israel;Proceedings of the 2020 Integrated Communications Navigation and Surveillance Conference (ICNS),2020

3. Playing Atari with Deep Reinforcement Learninghttp://arxiv.org/abs/1312.5602

4. Mastering the game of Go with deep neural networks and tree search

5. Financial portfolio optimization with online deep reinforcement learning and restricted stacked autoencoder—DeepBreath

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3