An Augmented Reality-Assisted Prognostics and Health Management System Based on Deep Learning for IoT-Enabled Manufacturing

Author:

Wang Liping,Tang Dunbing,Liu Changchun,Nie Qingwei,Wang Zhen,Zhang Linqi

Abstract

With increasingly advanced Internet of Things (IoT) technology, the composition of workshop equipment has become more and more complex. Based on this, the rate of system performance degradation and the probability of fault have both increased. Owing to this, not only has the difficulty of constructing the remaining useful life (RUL) model increased but also the improvement in speed of maintenance personnel cannot keep up with the speed of equipment replacement. Therefore, an augmented reality (AR)-assisted prognostics and health management system based on deep learning for IoT-enabled manufacturing is proposed in this paper. Firstly, the feature extraction model based on Convolutional Neural Network-Particle Swarm Optimization (PSO-CNN) is proposed with the purpose of excavating the internal associations in large amounts of production data. Based on this, the high-accuracy RUL prediction is accomplished by Gate Recurrent Unit (GRU)-attention, which can capture the long-term and short-term dependencies of time series and successfully solve the gradient disappearance problem of RNN. Moreover, more attention will be paid to important content with the help of the attention mechanism. Additionally, high-efficiency maintenance guidance and visible instructions can be accomplished by AR. On top of this, the remote expert can offer help when maintenance personnel encounters tough problems. Finally, a real case was implemented in a typical IoT-enabled workshop, which validated the effectiveness of the proposed approach.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3