MCMCINLA Estimation of Missing Data and Its Application to Public Health Development in China in the Post-Epidemic Era

Author:

Teng Jiaqi,Ding Shuzhen,Shi Xiaoping,Zhang Huiguo,Hu Xijian

Abstract

Medical data are often missing during epidemiological surveys and clinical trials. In this paper, we propose the MCMCINLA estimation method to account for missing data. We introduce a new latent class into the spatial lag model (SLM) and use a conditional autoregressive specification (CAR) spatial model-based approach to impute missing values, making the model fit into the integrated nested Laplace approximation (INLA) framework. Combining the advantages of both the Markov chain Monte Carlo (MCMC) and INLA frameworks, the MCMCINLA algorithm is used to implement imputation of the missing data and fit the model to derive estimates of the parameters from the posterior margins. Finally, the economic data and the hemorrhagic fever with renal syndrome (HFRS) disease data of mainland China from 2016–2018 are used as examples to explore the development of public health in China in the post-epidemic era. The results show that compared with expectation maximization (EM) and full information maximum likelihood estimation (FIML), the predicted values of the missing data obtained using our method are closer to the true values, and the spatial distribution of HFRS in China can be inferred from the imputation results with a southern-heavy and northern-light distribution. It can provide some references for the development of public health in China in the post-epidemic era.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Xinjiang

Ministry of education of Humanities and Social Science project

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference31 articles.

1. Entropy: From Thermodynamics to Information Processing

2. Statistical Analysis with Missing Data;Little,2002

3. mice: Multivariate Imputation by Chained Equations inR

4. Supervised learning from incomplete data via an EM approach;Ghahramani;Adv. Neural Inf. Process. Syst.,1984

5. Handling Incomplete Data with Regression Imputation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3