Spatial Scale Effects of Soil Respiration in Arid Desert Tugai Forest: Responses to Plant Functional Traits and Soil Abiotic Factors

Author:

Wang JinlongORCID,He Xuemin,Ma Wen,Li Zhoukang,Chen Yudong,Lv Guanghui

Abstract

Understanding the spatial variation law of soil respiration (Rs) and its influencing factors is very important when simulating and predicting the terrestrial carbon cycle process. However, there are still limitations in understanding how different sampling scales affect the spatial heterogeneity of Rs and whether the spatial scale effect will change with habitat types. Our objectives were to explore the effects of different sampling scales on the spatial variability of Rs and the relative importance of soil abiotic characteristics and plant traits in influencing the spatial variability of Rs. The Rs, soil properties, and plant traits were measured through field investigation and indoor analysis in the Tugai forest desert plant community in the Ebinur Lake Basin in northwest China. The Rs showed significant water gradient changes, with a coefficient of variation of 35.4%–58%. Plot types had significant effects on Rs, while the change of sampling scale did not lead to significant differences in Rs. At the plot scale, Rs spatial variation at the 5 m × 5 m sampling scale mainly depended on plant traits (leaf length, leaf thickness, leaf dry matter content, and leaf phosphorus content, p < 0.05), while Rs spatial variation at the 10 m × 10 m scale mainly depended on soil properties (soil total phosphorus, ammonium nitrogen, soil water content, and pH, p < 0.05). At the local scale, soil nutrients (soil available phosphorus and ammonium nitrogen) and plant traits (maximum plant height, leaf length, and phosphorus content) at the 5 m × 5 m scale jointly explained 49% of the spatial change of Rs. In contrast, soil microclimate (soil water content), soil nutrients (soil pH, available phosphorus, and nitrate nitrogen), and plant traits (leaf thickness) jointly explained 51% of the spatial variation of Rs at the 10 m × 10 m scale. These results demonstrate the potential to predict the spatial variability of Rs based on the combination of easily measured aboveground functional traits and soil properties, which provides new ideas and perspectives for further understanding the mechanism of Rs change in Tugai forests.

Funder

National Natural Science Foundation of China

Xinjiang Uygur Autonomous Region Education Department

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3