A Short Note on Generating a Random Sample from Finite Mixture Distributions

Author:

Al-Labadi Luai1,Ly Anna1ORCID

Affiliation:

1. Department of Mathematical & Computational Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada

Abstract

Computational statistics is a critical skill for professionals in fields such as data science, statistics, and related disciplines. One essential aspect of computational statistics is the ability to simulate random variables from specified probability distributions. Commonly employed techniques for sampling random variables include the inverse transform method, acceptance–rejection method, and Box–Muller transformation, all of which rely on sampling from the uniform (0,1) distribution. A significant concept in statistics is the finite mixture model, characterized by a convex combination of multiple probability density functions. In this paper, we introduce a modified version of the composition method, a standard approach for sampling finite mixture models. Our modification offers the advantage of relying on sampling from the uniform (0,1) distribution, aligning with prevalent methods in computational statistics. This alignment simplifies teaching computational statistics courses, as well as having other benefits. We offer several examples to illustrate the approach.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3