A Hybrid Method for Solving the One-Dimensional Wave Equation of Tapered Sucker-Rod Strings

Author:

Yin Jiaojian1ORCID,Ma Hongzhang1

Affiliation:

1. College of Science, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Simulating surface conditions by solving the wave equation of a sucker-rod string is the theoretical basis of a sucker-rod pumping system. To overcome the shortcomings of the conventional finite difference method and analytical solution, this work describes a novel hybrid method that combines the analytical solution with the finite difference method. In this method, an analytical solution of the tapered rod wave equation with a recursive matrix form based on the Fourier series is proposed, a unified pumping condition model is established, a modified finite difference method is given, a hybrid strategy is established, and a convergence calculation method is proposed. Based on two different types of oil wells, the analytical solutions are verified by comparing different methods. The hybrid method is verified by using the finite difference method simulated data and measured oil data. The pumping speed sensitivity and convergence of the hybrid method are studied. The results show that the proposed analytical solution has high accuracy, with a maximum relative error relative to that of the classical finite difference method of 0.062%. The proposed hybrid method has a high simulation accuracy, with a maximum relative area error relative to that of the finite difference method of 0.09% and a maximum relative area error relative to measured data of 1.89%. Even at higher pumping speeds, the hybrid method still has accuracy. The hybrid method in this paper is convergent. The introduction of the finite difference method allows the hybrid method to more easily converge. The novelty of this work is that it combines the advantages of the finite difference method and the analytical solution, and it provides a convergence calculation method to provide guidance for its application. The hybrid method presented in this paper provides an alternative scheme for predicting the behavior of sucker-rod pumping systems and a new approach for solving wave equations with complex boundary conditions.

Funder

Shandong Province Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3