Pricing Chinese Convertible Bonds with Learning-Based Monte Carlo Simulation Model

Author:

Zhu Jiangshan1,Wen Conghua1ORCID,Li Rong1

Affiliation:

1. Department of Financial and Actuarial Mathematics, School of Mathematics and Physics, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China

Abstract

In this paper, we explore a novel model for pricing Chinese convertible bonds that seamlessly integrates machine learning techniques with traditional models. The least squares Monte Carlo (LSM) method is effective in handling multiple state variables and complex path dependencies through simple regression analysis. In our approach, we incorporate machine learning techniques, specifically support vector regression (SVR) and random forest (RF). By employing Bayesian optimization to fine-tune the random forest, we achieve improved predictive performance. This integration is designed to enhance the precision and predictive capabilities of convertible bond pricing. Through the use of simulated data and real data from the Chinese convertible bond market, the results demonstrate the superiority of our proposed model over the classic LSM, confirming its effectiveness. The development of a pricing model incorporating machine learning techniques proves particularly effective in addressing the complex pricing system of Chinese convertible bonds. Our study contributes to the body of knowledge on convertible bond pricing and further deepens the application of machine learning in the field in an integrated and supportive manner.

Publisher

MDPI AG

Reference46 articles.

1. Valuing American options by simulation: A simple least-squares approach;Longstaff;Rev. Financ. Stud.,2001

2. Pricing Chinese Convertible Bonds with Default Intensity by Monte Carlo Method;Luo;Discret. Dyn. Nat. Soc.,2019

3. Pricing Chinese Convertible Bonds with Dynamic Credit Risk;Li;Discret. Dyn. Nat. Soc.,2014

4. Valuing Convertible Bonds Based on LSRQM Method;Liu;Discret. Dyn. Nat. Soc.,2014

5. Nazemi, A., Rauch, J., and Fabozzi, F.J. (2022). Interpretable Machine Learning for Creditor Recovery Rates. SSRN Electron. J.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3