Using Lie Sphere Geometry to Study Dupin Hypersurfaces in Rn

Author:

Cecil Thomas E.1

Affiliation:

1. Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, MA 01610, USA

Abstract

A hypersurface M in Rn or Sn is said to be Dupin if along each curvature surface, the corresponding principal curvature is constant. A Dupin hypersurface is said to be proper Dupin if each principal curvature has constant multiplicity on M, i.e., the number of distinct principal curvatures is constant on M. The notions of Dupin and proper Dupin hypersurfaces in Rn or Sn can be generalized to the setting of Lie sphere geometry, and these properties are easily seen to be invariant under Lie sphere transformations. This makes Lie sphere geometry an effective setting for the study of Dupin hypersurfaces, and many classifications of proper Dupin hypersurfaces have been obtained up to Lie sphere transformations. In these notes, we give a detailed introduction to this method for studying Dupin hypersurfaces in Rn or Sn, including proofs of several fundamental results. We also give a survey of the results in the field that have been obtained using this approach.

Publisher

MDPI AG

Reference55 articles.

1. Dupin hypersurfaces;Pinkall;Math. Ann.,1985

2. Über Komplexe, inbesondere Linien- und Kugelkomplexe, mit Anwendung auf der Theorie der partieller Differentialgleichungen;Lie;Math. Ann.,1872

3. Lie, S., and Scheffers, G. (1896). Geometrie der Berührungstransformationen, Teubner.

4. Cecil, T. (2008). Lie Sphere Geometry, with Applications to Submanifolds, Springer. [2nd ed.]. Universitext.

5. Smoothness theorems for the principal curvatures and principal vectors of a hypersurface;Singley;Rocky Mountain J. Math.,1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3