Integral Representations over Finite Limits for Quantum Amplitudes

Author:

Straton Jack C.1ORCID

Affiliation:

1. Department of Physics, Portland State University, Portland, OR 97207-0751, USA

Abstract

We extend previous research to derive three additional M-1-dimensional integral representations over the interval [0,1]. The prior version covered the interval [0,∞]. This extension applies to products of M Slater orbitals, since they (and wave functions derived from them) appear in quantum transition amplitudes. It enables the magnitudes of coordinate vector differences (square roots of polynomials) |x1−x2|=x12−2x1x2cosθ+x22 to be shifted from disjoint products of functions into a single quadratic form, allowing for the completion of its square. The M-1-dimensional integral representations of M Slater orbitals that both this extension and the prior version introduce provide alternatives to Fourier transforms and are much more compact. The latter introduce a 3M-dimensional momentum integral for M products of Slater orbitals (in M separate denominators), followed in many cases by another set of M-1-dimensional integral representations to combine those denominators into one denominator having a single (momentum) quadratic form. The current and prior methods are also slightly more compact than Gaussian transforms that introduce an M-dimensional integral for products of M Slater orbitals while simultaneously moving them into a single (spatial) quadratic form in a common exponential. One may also use addition theorems for extracting the angular variables or even direct integration at times. Each method has its strengths and weaknesses. We found that these M-1-dimensional integral representations over the interval [0,1] are numerically stable, as was the prior version, having integrals running over the interval [0,∞], and one does not need to test for a sufficiently large upper integration limit as one does for the latter approach. For analytical reductions of integrals arising from any of the three, however, there is the possible drawback for large M of there being fewer tabled integrals over [0,1] than over [0,∞]. In particular, the results of both prior and current representations have integration variables residing within square roots asarguments of Macdonald functions. In a number of cases, these can be converted to Meijer G-functions whose arguments have the form (ax2+bx+c)/x, for which a single tabled integral exists for the integrals from running over the interval [0,∞] of the prior paper, and from which other forms can be found using the techniques given therein. This is not so for integral representations over the interval [0,1]. Finally, we introduce a fourth integral representation that is not easily generalizable to large M but may well provide a bridge for finding the requisite integrals for such Meijer G-functions over [0,1].

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3