On Voigt-Type Functions Extended by Neumann Function in Kernels and Their Bounding Inequalities

Author:

Parmar Rakesh K.1ORCID,Pogány Tibor K.23ORCID,Sabu Uthara1

Affiliation:

1. Department of Mathematics, Pondicherry University, Puducherry 605014, India

2. Institute of Applied Mathematics, Óbuda University, Bécsi út 96/b, 1034 Budapest, Hungary

3. Faculty of Maritime Studies, University of Rijeka, Studentska 2, 51000 Rijeka, Croatia

Abstract

The principal aim of this paper is to introduce the extended Voigt-type function Vμ,ν(x,y) and its counterpart extension Wμ,ν(x,y), involving the Neumann function Yν in the kernel of the representing integral. The newly defined integral reduces to the classical Voigt functions K(x,y) and L(x,y), and to their generalizations by Srivastava and Miller, by the unification of Klusch. Following an approach by Srivastava and Pogány, we also present the multiparameter and multivariable versions Vμ,ν(r)(x,y),Wμ,ν(r)(x,y) and the r positive integer of the initial extensions Vμ,ν(x,y),Wμ,ν(x,y). Several computable series expansions are obtained for the discussed Voigt-type functions in terms of Humbert confluent hypergeometric functions Ψ2(r). Furthermore, by transforming the input extended Voigt-type functions by the Grünwald–Letnikov fractional derivative, we establish representation formulae in terms of the associated Legendre functions of the second kind Qη−ν in the two-parameter and two-variable cases. Finally, functional bounding inequalities are given for Vμ,ν(x,y) and Wμ,ν(x,y). Particularly interesting results are presented for the Neumann function Yν and for the Struve Hν function in the form of several functional bounds. The article ends with a thorough discussion and closing remarks.

Publisher

MDPI AG

Reference28 articles.

1. Zur Theorie der Beugung ebener inhomogener Wellen an einem geradlinig begrentzen unendlichen und absolut schwarzen Schirm;Voigt;Gött. Nachr.,1889

2. Über die Emission, Absorption und Intesitätsverteilung von Spektrallinien;Reiche;Ber. Deutsch. Phys. Ges.,1913

3. Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F.G. (1953). Higher Transcendental Functions, McGraw–Hill Book Company.

4. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., and Clark, C.W. (2010). NIST Handbook of Mathematical Functions, Cambridge University Press.

5. A unified presentation of the Voigt functions;Srivastava;Astrophys. Space Sci.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3