Spectral Curves for Third-Order ODOs

Author:

Rueda Sonia L.1ORCID,Zurro Maria-Angeles2ORCID

Affiliation:

1. Applied Mathematics Department, E.T.S. Arquitectura, Polytechnic University of Madrid, Avda. Juan de Herrera 4, 28040 Madrid, Spain

2. Mathematics Department, Autonomous University of Madrid, Ctra. Colmenar Km. 15, 28049 Madrid, Spain

Abstract

Spectral curves are algebraic curves associated to commutative subalgebras of rings of ordinary differential operators (ODOs). Their origin is linked to the Korteweg–de Vries equation and to seminal works on commuting ODOs by I. Schur and Burchnall and Chaundy. They allow the solvability of the spectral problem Ly=λy, for an algebraic parameter λ and an algebro-geometric ODO L, whose centralizer is known to be the affine ring of an abstract spectral curve Γ. In this work, we use differential resultants to effectively compute the defining ideal of the spectral curve Γ, defined by the centralizer of a third-order differential operator L, with coefficients in an arbitrary differential field of zero characteristic. For this purpose, defining ideals of planar spectral curves associated to commuting pairs are described as radicals of differential elimination ideals. In general, Γ is a non-planar space curve and we provide the first explicit example. As a consequence, the computation of a first-order right factor of L−λ becomes explicit over a new coefficient field containing Γ. Our results establish a new framework appropriate to develop a Picard–Vessiot theory for spectral problems.

Funder

Spanish MICINN

Publisher

MDPI AG

Reference44 articles.

1. Picard–Vessiot theory and the Jacobian problem;Crespo;Israel J. Math.,2011

2. Commuting ordinary differential operators with polynomial coefficients and automorphisms of the first Weyl algebra;Mironov;Int. Math. Res. Not.,2016

3. Guo, J., and Zheglov, A. (2024). On some questions around Berest’s conjecture. arXiv.

4. Détermination des cas de réduction de l’équation différentielle d2y/dx2 = [ϕ(x) + h]y;Drach;C. R. Math. Acad. Sci. Paris,1919

5. Spectral/quadrature duality: Picard-Vessiot theory and finite-gap potentials;Brezhnev;Contemp. Math.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3