A New Optimal Numerical Root-Solver for Solving Systems of Nonlinear Equations Using Local, Semi-Local, and Stability Analysis

Author:

Qureshi Sania12ORCID,Chicharro Francisco I.3ORCID,Argyros Ioannis K.4ORCID,Soomro Amanullah1ORCID,Alahmadi Jihan5ORCID,Hincal Evren6ORCID

Affiliation:

1. Department of Basic Sciences and Related Studies, Mehran University of Engineering & Technology, Jamshoro 76062, Pakistan

2. Department of Computer Science and Mathematics, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon

3. Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, 46022 València, Spain

4. Department of Computing and Mathematics Sciences, Cameron University, Lawton, OK 73505, USA

5. Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

6. Department of Mathematics, Near East University, 99138 Mersin, Turkey

Abstract

This paper introduces an iterative method with a remarkable level of accuracy, namely fourth-order convergence. The method is specifically tailored to meet the optimality condition under the Kung–Traub conjecture by linear combination. This method, with an efficiency index of approximately 1.5874, employs a blend of localized and semi-localized analysis to improve both efficiency and convergence. This study aims to investigate semi-local convergence, dynamical analysis to assess stability and convergence rate, and the use of the proposed solver for systems of nonlinear equations. The results underscore the potential of the proposed method for several applications in polynomiography and other areas of mathematical research. The improved performance of the proposed optimal method is demonstrated with mathematical models taken from many domains, such as physics, mechanics, chemistry, and combustion, to name a few.

Funder

Ayuda a Primeros Proyectos de Investigación (PAID-06-23), Vicerrectorado de Investigación de la Universitat Politècnica de València

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3