Affiliation:
1. School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
Abstract
A kind of reduced-dimension method based on a weighted explicit finite difference scheme and the proper orthogonal decomposition (POD) technique for diffusion equations with Riemann–Liouville fractional derivatives in space are discussed. The constructed approximation method written in matrix form can not only ensure a sufficient accuracy order but also reduce the degrees of freedom, decrease storage requirements, and accelerate the computation rate. Uniqueness, stabilization, and error estimation are demonstrated by matrix analysis. The procedural steps of the POD algorithm, which reduces dimensionality, are outlined. Numerical simulations to assess the viability and effectiveness of the reduced-dimension weighted explicit finite difference method are given. A comparison between the reduced-dimension method and the classical weighted explicit finite difference scheme is presented, including the error in the L2 norm, the accuracy order, and the CPU time.
Funder
National Natural Science Foundation of China
Programfor Innovative Research Teamin Universities of InnerMongolia Autonomous Region
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献