New Bounds for Three Outer-Independent Domination-Related Parameters in Cactus Graphs

Author:

Cabrera-Martínez Abel1ORCID,Rueda-Vázquez Juan Manuel1ORCID,Segarra Jaime2ORCID

Affiliation:

1. Departamento de Matemáticas, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain

2. School of Mathematical and Computational Sciences, Yachay Tech University, San Miguel de Urcuquí 100115, Imbabura, Ecuador

Abstract

Let G be a nontrivial connected graph. For a set D⊆V(G), we define D¯=V(G)∖D. The set D is a total outer-independent dominating set of G if |N(v)∩D|≥1 for every vertex v∈V(G) and D¯ is an independent set of G. Moreover, D is a double outer-independent dominating set of G if |N[v]∩D|≥2 for every vertex v∈V(G) and D¯ is an independent set of G. In addition, D is a 2-outer-independent dominating set of G if |N(v)∩D|≥2 for every vertex v∈D¯ and D¯ is an independent set of G. The total, double or 2-outer-independent domination number of G, denoted by γtoi(G), γ×2oi(G) or γ2oi(G), is the minimum cardinality among all total, double or 2-outer-independent dominating sets of G, respectively. In this paper, we first show that for any cactus graph G of order n(G)≥4 with k(G) cycles, γ2oi(G)≤n(G)+l(G)2+k(G), γtoi(G)≤2n(G)−l(G)+s(G)3+k(G) and γ×2oi(G)≤2n(G)+l(G)+s(G)3+k(G), where l(G) and s(G) represent the number of leaves and the number of support vertices of G, respectively. These previous bounds extend three known results given for trees. In addition, we characterize the trees T with γ×2oi(T)=γtoi(T). Moreover, we show that γ2oi(T)≥n(T)+l(T)−s(T)+12 for any tree T with n(T)≥3. Finally, we give a constructive characterization of the trees T that satisfy the equality above.

Publisher

MDPI AG

Reference14 articles.

1. Haynes, T.W., Hedetniemi, S.T., and Slater, P.J. (1998). Fundamentals of Domination in Graphs, Marcel Dekker, Inc.

2. Haynes, T.W., Hedetniemi, S.T., and Slater, P.J. (1998). Domination in Graphs: Advanced Topics, Marcel Dekker, Inc.

3. Total co-independent domination in graphs;Soner;Appl. Math. Sci.,2012

4. The total co-independent domination number of some graph operations;Peterin;Rev. Union Mat. Argent.,2022

5. On computational and combinatorial properties of the total co-independent domination number of graphs;Yero;Comput. J.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3