Generalized Fuzzy-Valued Convexity with Ostrowski’s, and Hermite-Hadamard Type Inequalities over Inclusion Relations and Their Applications

Author:

Cortez Miguel Vivas1ORCID,Althobaiti Ali2ORCID,Aljohani Abdulrahman F.3ORCID,Althobaiti Saad4ORCID

Affiliation:

1. Escuela de Ciencias F’ısicas y Matemáticas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076, Apartado, Quito 17-01-2184, Ecuador

2. Department of Mathematics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

3. Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia

4. Department of Sciences and Technology, Ranyah University Collage, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Abstract

Convex inequalities and fuzzy-valued calculus converge to form a comprehensive mathematical framework that can be employed to understand and analyze a broad spectrum of issues. This paper utilizes fuzzy Aumman’s integrals to establish integral inequalities of Hermite-Hahadard, Fejér, and Pachpatte types within up and down (U·D) relations and over newly defined class U·D-ħ-Godunova–Levin convex fuzzy-number mappings. To demonstrate the unique properties of U·D-relations, recent findings have been developed using fuzzy Aumman’s, as well as various other fuzzy partial order relations that have notable deficiencies outlined in the literature. Several compelling examples were constructed to validate the derived results, and multiple notes were provided to illustrate, depending on the configuration, that this type of integral operator generalizes several previously documented conclusions. This endeavor can potentially advance mathematical theory, computational techniques, and applications across various fields.

Funder

Taif University, Saudi Arabia

Publisher

MDPI AG

Reference47 articles.

1. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals;Zhao;Comput. Methods Funct. Theory,2021

2. Furuichi, S. (2020). Inequalities, MDPI-Multidisciplinary Digital Publishing Institute.

3. An existence result for a periodic boundary value problem of fractional semilinear differential equations in a Banach space;Kamenskii;J. Nonlinear Var. Anal.,2021

4. Interval Analysis: By Ramon E. Moore. 145 Pages, Diagrams, 6x 9 in. New Jersey, Englewood Cliffs, Prentice-Hall, 1966. Price, 9.00;Dwyer;J. Frankl. Inst.,1967

5. On Hermite-Hadamard type inequalities for interval-valued multiplicative integrals;Zhang;Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3