A Note on a Fractional Extension of the Lotka–Volterra Model Using the Rabotnov Exponential Kernel

Author:

Khader Mohamed M.12ORCID,Macías-Díaz Jorge E.34ORCID,Román-Loera Alejandro5ORCID,Saad Khaled M.67ORCID

Affiliation:

1. Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11566, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Benha University, Benha 13518, Egypt

3. Department of Mathematics, School of Digital Technologies, Tallinn University, Narva Rd. 25, 10120 Tallinn, Estonia

4. Department of Mathematics and Physics, Autonomous University of Aguascalientes, Ave. Universidad 940, Ciudad Universitaria, Aguascalientes 20100, Mexico

5. Department of Electronics, Autonomous University of Aguascalientes, Ave. Universidad 940, Ciudad Universitaria, Aguascalientes 20100, Mexico

6. Department of Mathematics, College of Sciences and Arts, Najran University, Najran P.O. Box 1988, Saudi Arabia

7. Department of Mathematics, Faculty of Applied Science, Taiz University, Taiz P.O. Box 6803, Yemen

Abstract

In this article, we study the fractional form of a well-known dynamical system from mathematical biology, namely, the Lotka–Volterra model. This mathematical model describes the dynamics of a predator and prey, and we consider here the fractional form using the Rabotnov fractional-exponential (RFE) kernel. In this work, we derive an approximate formula of the fractional derivative of a power function ζp in terms of the RFE kernel. Next, by using the spectral collocation method (SCM) based on the shifted Vieta–Lucas polynomials (VLPs), the fractional differential system is reduced to a set of algebraic equations. We provide a theoretical convergence analysis for the numerical approach, and the accuracy is verified by evaluating the residual error function through some concrete examples. The results are then contrasted with those derived using the fourth-order Runge-Kutta (RK4) method.

Funder

National Council of Science and Technology of Mexico

Publisher

MDPI AG

Reference22 articles.

1. Kilbas, S.G., Kilbas, A.A., and Marichev, O.I. (1993). Fractional Integrals and Derivatives: Theory and Applications, Gordon & Breach.

2. On the numerical evaluation for studying the fractional KdV, KdV-Burger’s, and Burger’s equations;Khader;Eur. Phys. J. Plus,2018

3. A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force;Kumar;Math. Methods Appl. Sci.,2020

4. A new general fractional-order derivative with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer;Yang;Therm. Sci.,2019

5. New numerical simulations for some real-world problems with Atangana-Baleanu fractional derivative;Gao;Chaos Solitons Fractals,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3