Brain Connectivity Dynamics and Mittag–Leffler Synchronization in Asymmetric Complex Networks for a Class of Coupled Nonlinear Fractional-Order Memristive Neural Network System with Coupling Boundary Conditions

Author:

Belmiloudi Aziz1

Affiliation:

1. INSA Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France

Abstract

This paper investigates the long-time behavior of fractional-order complex memristive neural networks in order to analyze the synchronization of both anatomical and functional brain networks, for predicting therapy response, and ensuring safe diagnostic and treatments of neurological disorder (such as epilepsy, Alzheimer’s disease, or Parkinson’s disease). A new mathematical brain connectivity model, taking into account the memory characteristics of neurons and their past history, the heterogeneity of brain tissue, and the local anisotropy of cell diffusion, is proposed. This developed model, which depends on topology, interactions, and local dynamics, is a set of coupled nonlinear Caputo fractional reaction–diffusion equations, in the shape of a fractional-order ODE coupled with a set of time fractional-order PDEs, interacting via an asymmetric complex network. In order to introduce into the model the connection structure between neurons (or brain regions), the graph theory, in which the discrete Laplacian matrix of the communication graph plays a fundamental role, is considered. The existence of an absorbing set in state spaces for system is discussed, and then the dissipative dynamics result, with absorbing sets, is proved. Finally, some Mittag–Leffler synchronization results are established for this complex memristive neural network under certain threshold values of coupling forces, memristive weight coefficients, and diffusion coefficients.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3