A Complete Characterization of Linear Dependence and Independence for All 4-by-4 Metric Matrices

Author:

Chen Ray-Ming12ORCID

Affiliation:

1. Department of Mathematical Sciences, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China

2. Department of Mathematical Sciences, College of Science, Mathematics and Technology, Kean University, 1000 Morris Avenue, Union, NJ 07083, USA

Abstract

In this article, we study the properties of 4-by-4 metric matrices and characterize their dependence and independence by M4×4=(M4×4−DM4×4)∪DM4×4, where DM4×4 is the set of all dependent metric matrices. DM4×4 is further characterized by DM4×4=DM14×4∪DM24×4, where DM24×4 is characterized by DM24×4=DM214×4∪DM224×4. These characterizations provide some insightful findings that go beyond the Euclidean distance or Euclidean distance matrix and link the distance functions to vector spaces, which offers some theoretical and application-related advantages. In the application parts, we show that the metric matrices associated with all Minkowski distance functions over four different points are linearly independent, and that the metric matrices associated with any four concyclic points are also linearly independent.

Funder

Wenzhou-Kean University

2023 Student Partnering with Faculty/Staff Research Program

2024 Summer Student Partnering with Faculty (SSpF) Research Program

Publisher

MDPI AG

Reference9 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3