On the Approximation of the Hardy Z-Function via High-Order Sections

Author:

Jerby Yochay1ORCID

Affiliation:

1. Faculty of Sciences, Holon Institute of Technology, Ya’akov Fichman St. 18, Holon 5810201, Israel

Abstract

The Z-function is the real function given by Z(t)=eiθ(t)ζ12+it, where ζ(s) is the Riemann zeta function, and θ(t) is the Riemann–Siegel theta function. The function, central to the study of the Riemann hypothesis (RH), has traditionally posed significant computational challenges. This research addresses these challenges by exploring new methods for approximating Z(t) and its zeros. The sections of Z(t) are given by ZN(t):=∑k=1Ncos(θ(t)−ln(k)t)k for any N∈N. Classically, these sections approximate the Z-function via the Hardy–Littlewood approximate functional equation (AFE) Z(t)≈2ZN˜(t)(t) for N˜(t)=t2π. While historically important, the Hardy–Littlewood AFE does not sufficiently discern the RH and requires further evaluation of the Riemann–Siegel formula. An alternative, less common, is Z(t)≈ZN(t)(t) for N(t)=t2, which is Spira’s approximation using higher-order sections. Spira conjectured, based on experimental observations, that this approximation satisfies the RH in the sense that all of its zeros are real. We present a proof of Spira’s conjecture using a new approximate equation with exponentially decaying error, recently developed by us via new techniques of acceleration of series. This establishes that higher-order approximations do not need further Riemann–Siegel type corrections, as in the classical case, enabling new theoretical methods for studying the zeros of zeta beyond numerics.

Publisher

MDPI AG

Reference26 articles.

1. Riemann, B. (1892). “Über die Anzahl der Primzahlen unter einer gegebenen Grösse.” Monatsberichte der Berliner Akademie. Gesammelte Werke, Teubner. Reprinted by Dover: New York, NY, USA, 1953.

2. Contributions to the Theory of the Riemann Zeta-Function and the Theory of the Distribution of Primes;Hardy;Acta Math.,1918

3. The zeros of Riemann’s zeta function on the critical line;Hardy;Math. Z.,1921

4. The Approximate Functional Equation in the Theory of the Zeta Function, with an Application to the Divisor-Problems of Dirichlet and Piltz;Hardy;Proc. Lond. Math. Soc.,1923

5. The approximate functional equations for ζ(s) and ζ2(s);Hardy;Proc. Lond. Math. Soc.,1929

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3