Research on the Validity of Bootstrap LM-Error Test in Spatial Random Effect Models

Author:

Ren Tongxian1,Xu Lin2,Ren Zhengliang1

Affiliation:

1. School of Economics and Statistics, Guangzhou University, Guangzhou 510006, China

2. School of Economics and Finance, South China University of Technology, Guangzhou 510006, China

Abstract

Under the condition of non-classical distributed errors, the test for spatial dependence in spatial panel data models is still a problem waiting to be solved. In this paper, we apply the FDB (Fast Double Bootstrap) method to spatial panel data models to test spatial dependence. In order to research the validity of the Bootstrap LM-Error test in spatial random effect models under the condition that the error term obeys a normal distribution, heteroscedasticity, or time-series correlation, we construct Bootstrap LM-Error statistics and make use of Monte Carlo simulation from size distortion and power aspects to carry out our research. The Monte Carlo simulation results show that the asymptotic LM-Error test in the spatial random effects model has a large size of distortion when the error term disobeys classical distribution. However, the FDB LM-Error test can effectively correct the size distortion of the asymptotic test with the precondition that there is nearly no loss of power in the FDB test. Obviously, compared to the asymptotic LM-Error test, the FDB LM-Error test is a more valid method to test spatial dependence in a spatial random effects model.

Funder

Natural Science Foundation of China’s General Program

MOE (Ministry of Education in China) Project of Humanities and Social Science

Publisher

MDPI AG

Reference20 articles.

1. Thirty years of spatial econometrics;Anselin;Pap. Reg. Sci.,2010

2. Bootstrap methods: Another look at the jackknife;Efron;Ann. Stat.,1979

3. Improving the reliability of bootstrap tests with the fast double bootstrap;Davidson;Comput. Stat. Data Anal.,2007

4. Bootstrap unit root tests in Panels with cross-sectional dependence;Chang;J. Econom.,2003

5. Bootstrap Panel unit root test under cross-sectional dependence with an application to PPP;Cerrato;Comput. Stat. Data Anal.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3