Hybrid Quantum Genetic Algorithm with Fuzzy Adaptive Rotation Angle for Efficient Placement of Unmanned Aerial Vehicles in Natural Disaster Areas

Author:

Ballinas Enrique1ORCID,Montiel Oscar1ORCID,Martínez-Vargas Anabel2ORCID,Rodríguez-Cortés Gabriela2ORCID

Affiliation:

1. Instituto Politécnico Nacional-CITEDI, 1310 Instituto Politécnico Nacional Ave., Nueva Tijuana, Tijuana 22430, Baja California, Mexico

2. Research, Innovation and Graduate Department, Universidad Politécnica de Pachuca, Carretera Pachuca-Cd. Sahagún km 20, Zempoala 43830, Hidalgo, Mexico

Abstract

A Hybrid Quantum Genetic Algorithm with Fuzzy Adaptive Rotation Angle (HQGAFARA) is introduced in this work to determine the optimal placements for Unmanned Aerial Vehicles (UAVs) aimed at maximizing coverage in disaster-stricken areas. The HQGAFARA is a hybrid quantum fuzzy meta-heuristic that uses the Deutsch–Jozsa quantum circuit to generate quantum populations synergistically working as haploid recombination and mutation operators that take advantage of quantum entanglement, providing exploitative and explorative features to produce new individuals. In place of the conventional lookup table or mathematical equation, we introduced a fuzzy heuristic to adapt the rotation angle employed in quantum gates. The hybrid nature of this algorithm becomes evident through its utilization of both classical and quantum computing components. Experimental evaluations were conducted using two distinct test sets. The first set, termed the “best case”, represents conditions that are the most favorable for determining the UAV positions, while the second set, the “worst-case”, simulates highly challenging conditions for locating the UAV positions, thereby posing a significant test for the proposed algorithm. We carried out statistical comparative analyses, assessing the HQGAFARA against other hybrid quantum algorithms that employ different rotation angles and against the classical genetic algorithm. The experimental results demonstrated that the HQGAFARA performed comparably, if not better, to the classical genetic algorithm regarding precision. Furthermore, quantum algorithms showcased their computational prowess in experiments related to the convergence time.

Funder

Instituto Politécnico Nacional

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3