Improving Realism of Facial Interpolation and Blendshapes with Analytical Partial Differential Equation-Represented Physics

Author:

Day Sydney12,Xiao Zhidong1ORCID,Chaudhry Ehtzaz1,Hooker Matthew2,Zhu Xiaoqiang3,Chang Jian1,Iglesias Andrés4ORCID,You Lihua1,Zhang Jianjun1

Affiliation:

1. National Centre for Computer Animation, Bournemouth University, Bournemouth BH12 5BB, UK

2. Axis Studios, Glasgow G3 8EP, UK

3. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China

4. Department of Applied Mathematics and Computational Sciences, University of Cantabria, 39005 Santander, Spain

Abstract

How to create realistic shapes by interpolating two known shapes for facial blendshapes has not been investigated in the existing literature. In this paper, we propose a physics-based mathematical model and its analytical solutions to obtain more realistic facial shape changes. To this end, we first introduce the internal force of elastic beam bending into the equation of motion and integrate it with the constraints of two known shapes to develop the physics-based mathematical model represented with dynamic partial differential equations (PDEs). Second, we propose a unified mathematical expression of the external force represented with linear and various nonlinear time-dependent Fourier series, introduce it into the mathematical model to create linear and various nonlinear dynamic deformations of the curves defining a human face model, and derive analytical solutions of the mathematical model. Third, we evaluate the realism of the obtained analytical solutions in interpolating two known shapes to create new shape changes by comparing the shape changes calculated with the obtained analytical solutions and geometric linear interpolation to the ground-truth shape changes and conclude that among linear and various nonlinear PDE-based analytical solutions named as linear, quadratic, and cubic PDE-based interpolation, quadratic PDE-based interpolation creates the most realistic shape changes, which are more realistic than those obtained with the geometric linear interpolation. Finally, we use the quadratic PDE-based interpolation to develop a facial blendshape method and demonstrate that the proposed approach is more efficient than numerical physics-based facial blendshapes.

Funder

European Union’s Horizon 2020 research and innovation programme

Engineering and Physical Sciences Research Council

Axis Studios Group

Agencia Estatal de Investigaci on (AEI), Spanish Ministry of Science and Innovation, Computer Science National Program

EU

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3