A SIR Epidemic Model Allowing Recovery

Author:

Pakes Anthony G.1

Affiliation:

1. Department of Mathematics & Statistics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Abstract

The deterministic SIR model for disease spread in a closed population is extended to allow infected individuals to recover to the susceptible state. This extension preserves the second constant of motion, i.e., a functional relationship of susceptible and removed numbers, S(t) and R(t), respectively. This feature allows a substantially complete elucidation of qualitative properties. The model exhibits three modes of behaviour classified in terms of the sign of −S′(0), the initial value of the epidemic curve. Model behaviour is similar to that of the SIS model if S′(0)>0 and to the SIR model if S′(0)<0. The separating case is completely soluble and S(t) is constant-valued. Long-term outcomes are determined for all cases, together with determination of the rate of convergence. Determining the shape of the epidemic curve motivates an investigation of curvature properties of all three state functions and quite complete results are obtained that are new, even for the SIR model. Finally, the second threshold theorem for the SIR model is extended in refined and generalised forms.

Publisher

MDPI AG

Reference7 articles.

1. Bailey, N. (1975). The Mathematical Theory of Infectious Diseases, Charles Griffin. [2nd ed.].

2. Daley, D., and Gani, J. (1999). Epidemic Modelling: An Introduction, C.U.P.

3. A tutorial on common differential equations and solutions useful for modeling epidemics like COVID-19: Linear and non-linear compartment models;Mulkern;J. Appl. Math. Phys.,2022

4. Olver, F., Lozier, D., Boisvert, R., and Clark, C. (2010). NIST Handbook of Mathematical Functions, C.U.P.

5. Lambert’s W meets the Kermack-McKendrick epidemics;Pakes;IMA J. Appl. Math.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3