Some Refinements and Generalizations of Bohr’s Inequality

Author:

Aljawi Salma1ORCID,Conde Cristian23ORCID,Feki Kais4ORCID

Affiliation:

1. Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1425, Argentina

3. Instituto de Ciencias, Universidad Nacional de General Sarmiento, Los Polvorines 1613, Argentina

4. Department of Mathematics, College of Science and Arts, Najran University, Najran 66462, Kingdom of Saudi Arabia

Abstract

In this article, we delve into the classic Bohr inequality for complex numbers, a fundamental result in complex analysis with broad mathematical applications. We offer refinements and generalizations of Bohr’s inequality, expanding on the established inequalities of N. G. de Bruijn and Radon, as well as leveraging the class of functions defined by the Daykin–Eliezer–Carlitz inequality. Our novel contribution lies in demonstrating that Bohr’s and Bergström’s inequalities can be derived from one another, revealing a deeper interconnectedness between these results. Furthermore, we present several new generalizations of Bohr’s inequality, along with other notable inequalities from the literature, and discuss their various implications. By providing more comprehensive and verifiable conditions, our work extends previous research and enhances the understanding and applicability of Bohr’s inequality in mathematical studies.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Reference25 articles.

1. Hardy, G.H., Littlewood, J.E., and Polya, G. (1934). Inequalities, Cambridge University Press.

2. Lieb, E.H. (2003). Inequalities: Selecta of Elliott H. Lieb, Springer Science & Business Media.

3. Mitrinović, D.S., Pexcxarixcx, J.E., and Fink, A.M. (1993). Classical and New Inequalities in Analysis, Kluwer Academic Publishers Group.

4. Marshall, A.W., Olkin, I., and Arnold, B.C. (2011). Inequalities: Theory of Majorization and Its Applications, Springer. [2nd ed.].

5. Pons, O. (2021). Inequalities in Analysis and Probability, World Scientific Publishing Co. Pte. Ltd.. [3rd ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3