Extensions of Orders to a Power Set vs. Scores of Hesitant Fuzzy Elements: Points in Common of Two Parallel Theories

Author:

Induráin Esteban1ORCID,Munárriz Ana2ORCID,Sara M. Sergio3ORCID

Affiliation:

1. InaMat2 (Institute for Advanced Materials and Mathematics), Departamento de Estadística, Informática y Matemáticas, Universidad Pública de Navarra, 31006 Pamplona, Spain

2. Inarbe (Institute for Advanced Research in Business and Economics), Departamento de Estadística, Informática y Matemáticas, Universidad Pública de Navarra, 31006 Pamplona, Spain

3. Departamento de Estadística, Informática y Matemáticas, Universidad Pública de Navarra, 31006 Pamplona, Spain

Abstract

We deal with two apparently disparate theories. One of them studies extensions of orderings from a set to its power set. The other one defines suitable scores on hesitant fuzzy elements. We show that both theories have the same mathematical substrate. Thus, important possibility/impossibility results concerning criteria for extensions can be transferred to new results on scores. And conversely, conditions imposed a priori on scores can give rise to new extension criteria. This enhances and enriches both theories. We show examples of translations of classical results on extensions in the context of scores. Also, we state new results concerning the impossibility of finding a utility function representing some kind of extension order if some restrictions are imposed on the utility function considered as a score.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3