Analyzing the Stability of a Connected Moving Cart on an Inclined Surface with a Damped Nonlinear Spring

Author:

AL Nuwairan Muneerah1ORCID,Amer T. S.2ORCID,Amer W. S.3ORCID

Affiliation:

1. Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia

2. Mathematics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt

3. Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebeen El-Kom 32511, Egypt

Abstract

This paper examines the stability behavior of the nonlinear dynamical motion of a vibrating cart with two degrees of freedom (DOFs). Lagrange’s equations are employed to establish the mechanical regulating system of the examined motion. The proposed approximate solutions (ASs) of this system are estimated through the use of the multiple-scales method (MSM). These solutions are considered novel as the MSM is being applied to a new dynamical model. Secular terms have been eliminated to meet the solvability criteria, and every instance of resonance that arises is categorized, where two of them are examined concurrently. Therefore, the modulation equations are developed based on the representations of the unknown complex function in polar form. The solutions for the steady state are calculated using the corresponding fixed points. The achieved solutions are displayed graphically to illustrate the impact of manipulating the system’s parameters and are compared to the numerical solutions (NSs) of the system’s original equations. This comparison shows a great deal of consistency with the numerical solution, which indicates the accuracy of the applied method. The nonlinear stability criteria of Routh–Hurwitz are employed to assess the stability and instability zones. The value of the proposed model is exhibited by its wide range of applications involving ship motion, swaying architecture, transportation infrastructure, and rotor dynamics.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3