Partial Discharge Recognition with a Multi-Resolution Convolutional Neural Network

Author:

Li Gaoyang,Wang Xiaohua,Li XiORCID,Yang Aijun,Rong Mingzhe

Abstract

Partial discharge (PD) is not only an important symptom for monitoring the imperfections in the insulation system of a gas-insulated switchgear (GIS), but also the factor that accelerates the degradation. At present, monitoring ultra-high-frequency (UHF) signals induced by PDs is regarded as one of the most effective approaches for assessing the insulation severity and classifying the PDs. Therefore, in this paper, a deep learning-based PD classification algorithm is proposed and realized with a multi-column convolutional neural network (CNN) that incorporates UHF spectra of multiple resolutions. First, three subnetworks, as characterized by their specified designed temporal filters, frequency filters, and texture filters, are organized and then intergraded by a fully-connected neural network. Then, a long short-term memory (LSTM) network is utilized for fusing the embedded multi-sensor information. Furthermore, to alleviate the risk of overfitting, a transfer learning approach inspired by manifold learning is also present for model training. To demonstrate, 13 modes of defects considering both the defect types and their relative positions were well designed for a simulated GIS tank. A detailed analysis of the performance reveals the clear superiority of the proposed method, compared to18 typical baselines. Several advanced visualization techniques are also implemented to explore the possible qualitative interpretations of the learned features. Finally, a unified framework based on matrix projection is discussed to provide a possible explanation for the effectiveness of the architecture.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3