Parameter Identification of Displacement Model for Giant Magnetostrictive Actuator Using Differential Evolution Algorithm

Author:

Ju Xiaojun1,Lu Jili1,Rong Bosong1,Jin Hongyan1ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Zaozhuang University, Bei’an Road, Zaozhuang 277160, China

Abstract

Based on Jiles–Atherton theory and the quadratic law, a displacement model for giant magnetostrictive actuators (GMA) has been developed. The Runge–Kutta method is used to solve the nonlinear differential equation of the hysteresis model in a segmented magnetic field. Aiming at the problem that the model parameters are coupled with each other and difficult to estimate, a heuristic intelligent search algorithm-differential evolution algorithm (DE) is employed to implement parameter identification. In order to verify the effectiveness of the algorithm, comparative studies with the genetic algorithm (GA) and the particle swarm optimization (PSO) applied in parameter identification are performed. The simulation results demonstrate that the algorithm has the advantages of requiring few control variables, fast convergence speed, stable identified results, and excellent repeatability. Furthermore, the experimental results demonstrate that the output displacements calculated from the identified model are in great agreement with the measured values. Accordingly, the DE can identify the parameters of a displacement model for giant magnetostrictive actuators with satisfactory accuracy and reliability.

Funder

National Natural Science Foundation of China

The Doctor’s Fund of Zaozhuang University

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3