Acoustic Performance Study of Fiber-Optic Acoustic Sensors Based on Fabry–Pérot Etalons with Different Q Factors

Author:

Chen Jiamin,Xue Chenyang,Zheng Yongqiu,Bai Jiandong,Zhao Xinyu,Wu Liyun,Han Yuan

Abstract

The ideal development direction of the fiber-optic acoustic sensor (FOAS) is toward broadband, a high sensitivity and a large dynamic range. In order to further promote the acoustic detection potential of the Fabry–Pérot etalon (FPE)-based FOAS, it is of great significance to study the acoustic performance of the FOAS with the quality (Q) factor of FPE as the research objective. This is because the Q factor represents the storage capability and loss characteristic of the FPE. The three FOASs with different Q factors all achieve a broadband response from 20 Hz to 70 kHz with a flatness of ±2 dB, which is consistent with the theory that the frequency response of the FOAS is not affected by the Q factor. Moreover, the sensitivity of the FOAS is proportional to the Q factor. When the Q factor is 1.04×106, the sensitivity of the FOAS is as high as 526.8 mV/Pa. Meanwhile, the minimum detectable sound pressure of 347.33 μPa/Hz1/2  is achieved. Furthermore, with a Q factor of 0.27×106, the maximum detectable sound pressure and dynamic range are 152.32 dB and 107.2 dB, respectively, which is greatly improved compared with two other FOASs. Separately, the FOASs with different Q factors exhibit an excellent acoustic performance in weak sound detection and high sound pressure detection. Therefore, different acoustic detection requirements can be met by selecting the appropriate Q factor, which further broadens the application range and detection potential of FOASs.

Funder

the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3