Numerical Simulation of the Influence of Non-Uniform ζ Potential on Interfacial Flow

Author:

Han Yu1,Zhao Wei1ORCID

Affiliation:

1. State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China

Abstract

Zeta potential (ζ potential) is a significant parameter to characterize the electric property of the electric double layer (EDL), which is important at the solid–liquid interface. Non-uniform ζ potential could be developed on a chemically uniform solid–liquid interface due to external flow. However, its influence on the flow has never been concerned. In this investigation, we numerically studied the influence of non-uniform 2D ζ potential on the flow at the solid–liquid interface. It is found, that even without any external electric field and only considering the influence of 2D ζ potential distribution, swirling flow can be generated near EDL, according to the rotational electric volume force. The streamwise vortices, which are important in the turbulent boundary layer, are theoretically predicted in this laminar flow model when considering the 2D distribution of ζ potential, implying the necessity of considering the origin of streamwise vortices of the turbulent boundary layer from the perspective of electrokinetic flow. In addition, the ζ potential distribution can promote the wall shear stress. Therefore, more attention must be paid to shear-sensitivity circumstances, like biomedical, medical devices, and in vivo. We hope that the current investigation can help us to better understand the effect of charge distribution on interfacial flow and provide theoretical guidance for the development of related applications in the future.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3