Online Recognition of Fallen-Off Bond Wires in IGBT Modules

Author:

Hu Zhen1ORCID,Cui Man2,Shi Tao3ORCID

Affiliation:

1. College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

2. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

3. Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Abstract

As a core component of power conversion systems, insulated gate bipolar transistor (IGBT) modules continually suffer from severe thermal damage caused by temperature swings and shear stress, resulting in fatigue failure. Bond wires falling off is one of the failure modes of IGBT modules. Given that the number of fallen-off bond wires is a significant parameter to evaluate the health status of the IGBT modules, this paper proposes an online identification model to recognize the number of fallen-off bond wires during normal operation. Firstly, a database containing datum Vce,on−Tj−IC (collector–emitter on-state voltage Vce,on, chip junction temperature Tj, collector current IC) planes with different fallen-off bond wires is built based on an offline aging test. Secondly, a Foster network model and a special circuit are designed to measure the junction temperature Tj and the collector–emitter on-state voltage Vce,on, respectively. Thirdly, the feature points of the IGBT module represented by Vce,on, Tj, and IC are given to the database to recognize the number of fallen-off bond wires according to the position of the feature points in the datum plane. The experimental results show that the proposed method can determine the fallen-off bond wires under the operation condition.

Funder

National Natural Science Foundation of China

Natural Science Research Project of higher education institutions in Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3