Dynamic Pricing Based on Demand Response Using Actor–Critic Agent Reinforcement Learning

Author:

Ismail Ahmed1,Baysal Mustafa1ORCID

Affiliation:

1. Faculty of Electrical and Electronics Engineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34220 Istanbul, Turkey

Abstract

Eco-friendly technologies for sustainable energy development require the efficient utilization of energy resources. Real-time pricing (RTP), also known as dynamic pricing, offers advantages over other pricing systems by enabling demand response (DR) actions. However, existing methods for determining and controlling DR have limitations in managing an increasing demand and predicting future pricing. This paper presents a novel approach to address the limitations of existing methods for determining and controlling demand response (DR) in the context of dynamic pricing systems for sustainable energy development. By leveraging actor–critic agent reinforcement learning (RL) techniques, a dynamic pricing DR model is proposed for efficient energy management. The model’s learning framework was trained using DR and real-time pricing data extracted from the Australian Energy Market Operator (AEMO) spanning a period of 17 years. The efficacy of the RL-based dynamic pricing approach was evaluated through two predicting cases: actual-predicted demand and actual-predicted price. Initially, long short-term memory (LSTM) models were employed to predict price and demand, and the results were subsequently enhanced using the deep RL model. Remarkably, the proposed approach achieved an impressive accuracy of 99% for every 30 min future price prediction. The results demonstrated the efficiency of the proposed RL-based model in accurately predicting both demand and price for effective energy management.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference62 articles.

1. A survey on demand response programs in smart grids: Pricing methods and optimization algorithms;Vardakas;IEEE Commun. Surv. Tutor.,2014

2. Challenges and barriers to demand response deployment and evaluation;Nolan;Appl. Energy,2015

3. Qdr, Q. (2006). Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them.

4. The role of regulatory reforms, market changes, and technology development to make demand response a viable resource in meeting energy challenges;Shen;Appl. Energy,2014

5. Demand response and smart grids—A survey;Siano;Renew. Sustain. Energy Rev.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey on Demand Response in the Landscape of Adaptive and Intelligent Building Energy Management Systems;2024 International Wireless Communications and Mobile Computing (IWCMC);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3