DC Admittance Model of VSCs for Stability Studies in VSC-HVDC Systems

Author:

Pedra Joaquín1ORCID,Sainz Luis1,Monjo Lluís2ORCID

Affiliation:

1. Department of Electrical Engineering (ETSEIB—UPC), Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain

2. Department of Electrical Engineering (EPSEVG—UPC), Universitat Politècnica de Catalunya, Av. Victor Balaguer s/n, 08800 Vilanova i La Geltrú, Spain

Abstract

High-voltage direct current (HVDC) systems linked to AC grids with converters are promising energy transmission systems. These systems present complex AC- and DC-side dynamic interactions. Impedance-based stability studies have recently been proposed to assess DC-side dynamics from DC-side characterization of voltage source converters (VSCs) considering AC-side dynamics. However, the existing approaches used for stability studies in VSC-HVDC systems do not completely model VSCs because they do not consider together the VSC delay, the grid voltage feedforward filter, and all the d- and q-reference current controls. Moreover, these approaches are analytically characterized from dq-real space vectors (less related to circuit theory than dq-complex space vectors), and some work with simple AC grids. The main contribution of this paper is a detailed and complete DC admittance model of VSCs from dq-complex space vectors, which considers the VSC delay, feedforward filter, and d- and q-reference current controls, and also a general AC grid. The proposed model can be used for DC-side stability studies in VSC-HVDC systems considering AC grid dynamics. The capabilities and drawbacks of impedance-based stability methods for DC-side stability assessment were analyzed, and the positive-net-damping criterion was validated as a robust approach. The model was validated by PSCAD/EMTDC simulations and applied to a stability study in a VSC-HVDC system.

Funder

MCIN

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3